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0. Introduction 

Vector space decompositions of a pointed coalgebra C over a field reflecting 
properties of its diagonal map are used by Sweedler [11] to classify the coalgebra, 
by Heyneman and Radford ([6], [10]) to discuss coreflexivity, and by Taft and 
Wilson (e.g. [13]) to obtain results about Hopf algebras from the underlying 
coalgebra. However, this type of structure has been classified in full only in specific 
cases, and the behavior of the diagonal on a general pointed coalgebra is known 
only to the extent obtained in the above. Using the structure of the first term of the 
coradical filtration (cf. [10], [11], [13]), Taft and Wilson [13] gave a vector-space 
decomposition yielding some information about the highest-weight terms in the 
diagonal (cf. 1.3 below). In addition, the complete structure of the diagonal is 
known for incidence coalgebras (on a partially-ordered set), and for those 
coalgebras which are a sum of their pointed irreducible components (PIC's). 
Subsequently, other papers have treated the structure of coalgebras from other 
points of view 

In this paper, the result of Taft and Wilson is refined to obtain a generalization 
of the PIC case (2.4 and 2.6), which agrees with the natural structure in the case 
of incidence coalgebras. Further refinements (3.1 and 3.6) are obtained by the use 
of certain invariants of the coalgebra, yielding a characterization of PIC coalgebras 
(3.2). 

Also, the class of generalized incidence coalgebras is characterized by use of these 
invariants, and the subclass of standard incidence coalgebras is isolated by 
homological arguments (4.6 and 4.8). 

Feinberg [3] has another method of distinguishing certain incidence coalgebras, 
which appears to have a little in common with this approach. He also studies the 
significance of Hl(P,k) and HI(p,k ~) in the incidence coalgebra. Graves [5] 
studies the (dual) Hochschild cohomology of incidence coalgebras, and obtains 
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results which appear  to be local analogues of 4.8. He also has results for other low- 
index cohomology groups. Ferrar and Allen [4] have results on (non-necessarily 
coassociative) incidence coalgebras which relate to Section 4. 

1. Preliminaries 

Let k be a given field with multiplicative group k* ,  and let all vector spaces and 
tensors be over k. Let Z denote the integers and P the positive integers. For a 

coalgebra C, d denotes its diagonal and e its counit. 

The coradical filtration and the wedge 

The wedge VA c W of two subspaces of  C is defined by 

VAc W= A-1(V®C + C® W). 

If  X is a subcoalgebra of  C, then so are A(°)X=X, A(n+I)X=(A(n)X)AX, and 

A(O.)X= U~=oA(n)x. Note A(')XCA(n+~)X. A subcoalgebra of C is simple if C 

has no proper subcoalgebras. The coradical Co of C is the sum of all simple sub- 
coalgebras. The terms of the coradical filtration of C are given by C,=A(')C o. 
Then we have C = Co,. 

For D and E subcoalgebras of C, D generates E iff A(co.)D =E. From [6], we have 
the following proposition: 

Proposition 1.1. (1) I f  D is a subcoalgebra of  C, then Dn 
(2) I f  A<O.)D=C, then CoCD. 
(3) I f  A~co.)D=E, then A~)D=A(~)D, for n>_O. 

=DNCnfor  all n. 

Grouplikes, nearly-primitives, and pseudo-primitives 

g e C is grouplike if e(g)= 1 and d g - g ® g  = O. The set of  all grouplikes of  C is 
denoted G(C), and there is a correspondence between G(C) and the set of  one- 

dimensional subcoalgebras of C. The grouplike coalgebra C(S; k) on a set S has as 
basis the elements of  S, with As = s®s and e(s) = 1 for each s e S. A coalgebra C is 
pointed if C O is a grouplike coalgebra. We henceforward assume all coalgebras are 
pointed. For a surjective map of pointed coalgebras, f :  C - , D ,  we have D O --f(C0). 
p ~ C is a nearly-primitive if e(p)= 0, and if there are grouplikes g and h with 
d p -  g®p - p ® h  = 0. A nearly-primitive with g = h is called an h-primitive, p ~ C 

is a pseudo-primitive o f  degree s for s e P, if p ¢ Cs_ 1, if e(p) = 0, and if there are 

grouplikes g and h with 

Ap - g®p - p ® h  ~ C s_ l ®Cs_ 1. 

p is a pseudo-primitive if it is a pseudo-primitive of  some degree. 
For a coalgebra C, the augmentation coideal of C, C +, is ker e. For any sub- 
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coalgebra D, D ÷ = ker e I D = C ÷ ND. All nearly- and pseudo-primitives are in C ÷. 
p is a (g, h)-nearly-primitive (resp. pseudo-primitive) if p is nearly-primitive (resp. 
pseudo-primitive) with respect to grouplikes g and h. 

We have directly: 

Proposition 1.2. (1) I f  p & nearly-primitive, then p ~ C 1 . 

(2) I f  p is a (g, h)-nearly-primitive and p ~ C o, then p ~ k(g - h). 
(3) I f  p is pseudo-primitive o f  degree s, then p e C s. Thus, s is unique. 
(4) I f  p is a pseudo-primitive o f  degree o f  s>_ 2, then 

s - I  

A p - g Q p - p Q h e  ~., Ci®Cs_ i. 
i = l  

(5) p is a pseudo-primitive for  at most one pair o f  group-likes. 
(6) I f  p is nearly primitive, either p ~ C~ , or p is a pseudo-primitive o f  degree 1. 

Gradings and filtrations 

A vector space V is graded by { V/}i~=0 if V=(~)V/ and filtered by { W/}i~ 0 if 
Co 

Wi c_ Wi+ 1 for all i and V= Ui=0 iv/. The partial sums, (~j=0 Vj, of a grading give 
an associated filtration FV; and complementary subspaces, W//W~_ l, of a filtra- 
tion give an associated grading G V. All vector spaces have a trivial grading 
Go D = D, GiD = {0} for i t  P, and a corresponding trivial filtration FiD = D for all 
i>_0. 

The direct sum of two graded (filtered) vector spaces has the grading (filtration) 
( A ~ ) n ) i = A i ( ~ B i ,  and the intersection of two filtered vector spaces behaves 
similarly. Also, the tensor product is graded (filtered) by (A ®B)i  = ~,j+r=iAjQBr, 
where the sum in the graded case is direct. 

A coalgebra C with a grading GC is a graded coalgebra if, for each c ~ GiC, 
A c e ( G C ® G C ) i  (and similarly for filtrations). Graded and filtered algebras are 
defined dually. The coradical filtration is always a coalgebra filtration. We will 
always take C as so filtered, and will use, in addition, the (vector-space) filtration 
FoC={0 }, F i C = C  i for i e P .  For X any graded vector space, coalgebra, or 
algebra, we have G F X = X ,  but F G X = X  only for vector spaces in general. 

Let K=(~)i% ~ K i (with K0= {0}) be a graded subspace of C with K C ke r  e, so 
that, for each i e P ,  K i Q C i - l  = Ci, and let L =FK be the associated filtered 
subspace. K is a graded complementary subspace (g.c.s.) of C. C o ~ K  is a (vector 
space) grading of  C whose associated filtration, CoGL, is the coradical filtration. 

Let Lg, h (resp., Kg, h)= { p e K : p  is a (g, h)-pseudo-primitive} IJ {0} with the in- 
duced filtration (resp., grading). Then Kg, h is a graded subspace of K. Taft  and 
Wilson [13] have shown: 

Proposition 1.3. (1) Ki=(~{Kg, h,i : g , h ~ G }  fo r  each i~P .  
(2) There is a choice o f  K so that, f o r  P ~ Kg, h, i, 
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d p -  g ® p - p ® h  ~ (FC®FC)i. 

Thus K can be chosen with Kl spanned by nearly primitives. 

Define projections 7zi and 7~g,h to be the natural projections of C onto Ki and 
Kg, h, respectively, and n0 to be the projection of C onto Co. Further, let 7[g,h,i  = 

~z i o ~Zg, h for i6P ,  and ng, h,0 be the composition of n0 with the projection of Co onto 
kg if g = h, and 0 if g~: h. 

The set of pseudo-primitives is related to those in K by: 

Proposition 1.4. c is a (g,h)-pseudo-primitive o f  degree i i f f  c = p G d ,  for  0=/= 
pEKg, h,i, and deC i_ l .  

Proof. If c is (g,h)-pseudo-primitive of degree i, then c = p G d  for d~Ci_ 1 and 
p e K i  (by 1.2) Computation of d ( c - d )  shows pEKg, h,i. 

Conversely, if c = p O d ,  c is seen to be pseudo-primitive. 

2. Graded complementary subspaces and the diagonal 

Let C be a pointed coalgebra over a field k. 

Theorem 2.1. There is a g.c.s. K for  C so that, for  all p~Lg, h, 

d p - g ® p - p ® h 6  ~ Lg, oQLo, h. 
o~G 

Remarks. This theorem, together with the next, can be seen from the examples of 
cocommutative and incidence coalgebras to be as specific a result as possible for the 
diagronal of an arbitrary pointed coalgebra. 

The proof of the theorem can be outlined as follows: Say (C, K) has property (.) 
if K is a g.c.s, of C for which the diagonalization formula of the theorem holds. 
By 1.3, there is a Kl so that (C1, KI) has property (.). We now proceed by induc- 
tion: Assume (Ci-l K - ( ~ i - ~ K j )  has property (.). We show 

, - -  x , : J j =  1 

(1) there is an R = R i  complementary to Ci_ 1 in Ci with projection of dR on 
Co®Co being 0; and 

(2) there is Ki with K O R  = K O K i  as graded subspaces of C (and K @ R  = K e K i  
as subspaces) so that (Ci, KGKi)  has property (.). 

Lemma 2.2. (1) ForpEKg,  h,i, 

a l p -  g ® p - p ® h  ~ (L(~L)i + ((Co(~ L)(~(Co(~L))i_ 1 (~)(C0~) C0). 

(2) I f  (C,K) has property (.), then L i is a coideal o f  C for  each i. 
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Proof. (1) By 1.3, 

A p - g ® p - p ®  h ~ (FC®FC)~C ((CoGL)®((CoGL))i, 

and the terms L i ® C  0 and Co®L i do not occur. 
(2) follows from (.) and 1.2. 

Lemma 2.3. Let (Ci_ 1, K)  have property (.). Then there is an R = Ri complemen- 
tary to Ci-1 in Ci with, for each ceRi, (no®no)Ac=O. 

Proof. Let g/be the natural projection of Ci onto Ci/L =D,  and let N=N~ be a 
g.c.s, of D spanned by nearly-primitives. Choose R C g/-l(N) to be complementary 

to Ci-1 in Ci. KGR is a g.c.s, of Ci s o  R=(~Rg, h. Let ceRg, h. Then 

Av/c-~g®tgc-~c®v/h=O, or (~®~)(Ac-g®c-c®h)=O. 
whence 

dc-g®c-c®heker (g /®~) ,  or 0z0®zt0)Ac=0. 

Proof of Theorem 2.1. Assume (Ci_ 1, K) has property (.) and R satisfies the con- 
clusions of Lemma 2.3, and let C6Rg, h. Then 

Ac~ g®c + c®h + (L®L)iG(Co®L i_ 1)~(Li_ 1®C o) 

(by Lemma 2.2). 
We would like to eliminate the last two terms in the summation, first finding an 

element Cl e c+Li_ 1 whose diagonal has zero projection on Li_ 1®Co. Let ~,= 
]~11 rtj be the projection of  Ci = CoOLi_ l O)R onto Li_ 1, and let ni be the projec- 
tion onto R. Also, let (g = e o rig, g,0. Using the formula for Ac and comparing terms 
of (A®I)Ac and ( I®A)Ac in Li_l®Co®Co, w e  have 

(I/,/0 ® It 0 ® 7~o)A 2c = (I®A)(~v ® rto)A c 

= (I®rto®I)(A ®I)(~V®no)Ac + ((~V®no)Ac)®h, 

which, for (~V®no)Ac= Ebec lo®b, implies 

E lb®b®b= E (I®rto)Ala®b+ E lb®b®h. 
beg beg beg 

Applying (I®(u®(o) gives, for o :#h, 

(I®(u)Alo=g,,ol o, so (IQzro)Alo=lo®v; 

and for o=h, lh=- ~,O,h lb" Thus 

(¢l® 7to)AC= b~h lb ® b -- (b~..h lb ® h)" 

Letting cl = c - ~ b ~ h  lb, we have (¢/®no)ACl =0.  
We would like to use the same technique to find a c2ecl+Li-i with 



162 T. Marlowe 

(z~0® tu)dc2 = 0, but first must check that we do not reintroduce terms in L i_ i (~) C0. 
Let (no®v/)Acl = ~.~Ec b®rb. Then 

(rto®~®rto)A2cl = ~] b ® r b ® h =  ~, b®(I®rto)Arb, 
b E G  b E G  

which, applying ( (u®I®(o) ,  yields rbe ~qEcKq, h. We now consider 

(rt0®rt0®~g)d2c = ~ g ® b ® r b +  ~. b®(rto®I)drb 
b E G  

= ~, bQb(~rb.  
b E G  

Applying ( (u®(o®I) ,  we find that, for b=/:g, ((o®I)drb=Jobrb, SO rbe ~..EGKb,., 
which implies that 

rb~'(q~Ggq, h) N(n~Ggb, n)=gb, h; 

and that rg = - ~.o.g ro. Thus 

(rt°@llt)dCl=~o@ro-g@(o~grv)'o.g 

Letting c2 = cl - ]~o.g ro, we have 

(no@ qt)Ac2 = 0 = ( ~ ®  no)A c2, 
or ,  

AC2 -- g(~c 2 " c2(~h E (Z(~L)i. 
Thus it remains to show that the terms in (LQL) i  are also in r, oEcLg, o®Lo, h. 

For each pair (g,h), choose a basis {c~} for Rg, h, and let Kg, h,i=span{(c~)2}. For 
c e Kg, h, i, write 

d c - g Q c - c Q h ~  ~, Lu, o(~Lx, y, 

where the summation is taken over only those (u, o, x, y) e G4 which make non-zero 

contributions to the sum. 
Then consideration of (g/®rt0®~),  (rt0® g/® g/), and (g/®g/®zt0) applied to 

AEc show, respectively, that o=x,  u=g,  and y = h ,  so 

d c - g ® c - c ® h e  ~, Lg, o®Lo, h. 
oE G 

This shows that Cg, h,i = (Ci_ i GKg, h,i, K(~Kg, h,i) has property (,), from which so 
does (Ci, Kt~Ki)  where Ci = ~,g,h Cg, h,i, ~ind Ki=~g,  hKg, h,i . This completes the in- 
duction and the proof. 

Henceforward we assume that all g.c.s.'s K of  C have been chosen so that (C, K) 
has property ( , ) .  

Note that if C is the sum of  its pointed irreducible components,  i.e. 
C =  CoO)~gEGKg, g, then the theorem states that, for c~Kg, g,i, 
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A c -  g @ c -  c@g ~ (Lg, g@Lg, g)i. 

This result has long been known for the cocommutative and the irreducible cases. 

Corollary 2.4. For any c ~ C: 
(I) (rCg, hQrts, t )dc=O i f  h#:s. 
(2) I f  (ng, r(~TCr, h)AC:/:O, then ng, hC:/:O. 
(3) I f  (rCg, v,i(~Zo, h,j)Ac=/:O, then rtg, h, sC:/:O for  some s>_i+j. 

The following theorem provides a partial converse for the corollary, and, in so 
doing, describes the highest-weight terms of ACi in C ® C ,  thus completing the 

general picture of  the diagonal. 

Lemma 2.5. I f  c ~ C i and c ~ C i_ 1, then either 

(7~1 (~) ~zi_ l)AC ~ 0 or (ni_l(X~Ttl)AC=/:O. 

Proof .  For i=  1, this is clear. 
For i_> 2, note 

A c e  Co®Ci + Ci®Co + Ki_ l®K1 + KI®Ki -1  + Ci-2®Ci-2 .  

So if ( r q ® n i _ l ) A c  and ( n i _ l ® n l ) A c  were 0, then 

ZIC E C o ( ~ C  i + Ci (~  C 0 + Ci_ 2@Ci_  2C Ci_ 2(~ C + C ( ~ C o ,  

which would imply c ~ Ci_ 1. 

Theorem 2.6. For all O<i<s,  and all O~c~Kg,  h,s, there is a o(i) (depending on c) 

such that (TZg, o(i),i(~no(i),h,s_i)Ac:/:O. 

Proof .  This is clear if i = 0 or i = s, and so, afor t ior i ,  for C = Cl. Suppose the con- 

clusion of the theorem holds for Cs-1, and c~Kg, h,s. Then, by 2.4 and 2.5, there 

is either a o(1) with (ng, o(l),l®no(l),h,s-l)Ac~O, or a o ( s -1 ) ;  without loss of 
generality assume o(1). 

By induction, there is a o(i) so that 

(I(~) no(1) , o(i), i -  I (~ 7[o(i), h, s -  i)(I(~ A )(rig, o(l), 1 ~) no(1), h, s- I)A C ~ 0. 

But since c~ C s, this is equal to 

(he,  o(1), 1 (~) no(l), o(i), i -  1 (~ no(i), h, s -  i) h 2C 

: (rig, o(1), 1 ~)  no(l), o(i),i- 1 ®I) (A  ®I)(ng, o(i), i (~  no(i), h, s -  i) A C, 

which shows (he, o(i), i ® no(i), h, s- i) A C ~ O. 

Corollary 2.7. For any c e  Cs and O<_i<_s, i f  nsC:/:O, then (Tti~Tts_i)ZlC~t&O. 



164 T. Marlowe 

3. Incidence-type invariants of pointed coalgebras 

An invariant of(pointed)  coalgebras is a functor on the subcategory of (pointed) 
coalgebras with monomorphisms.  For example, G is an invariant into Sets, whereas 
g.c.s, is not an invariant because there is no canonical choice of g.c.s, in a coalgebra. 
In this section we construct invariants into reflexive relations, indexed families of  
sets, and indexed families of subcoalgebras; and in the next section we will show 
that for an incidence coalgebra these are the reflexive relations, the family of inter- 
vals, and (in the special case of  a partial order) the family of subcoalgebras 
generated by intervals, respectively. We also determine some some restrictions on 
choice of g.c.s, given by the invariants. 

For a coalgebra C, define a relation r on the elements of G by r(g, h) iff g = h or 
Kg, h~O , and let r be its transitive closure. 

Let 
Ng, h =  {oeG:r(g ,o)  and r(o,h)} 

and 
Mg, h = {0 ~ G : r(g, o) and r(o, h)}. 

We then can obtain the following refinement of 2.6: 

Proposition 3 .1 .  I f  Oz/zpEKg, h,i and V(p)CNg, h bs minimal such that 

A p - g ® p - p ® h e  ~ (Lg, o®Lo, h), 
o~ V(p) 

then V(p) is finite and contains elements g = o(0), o(1), ..., o(i) = h (not necessarily 
distinct) with 

(7[o(0), o(1), 1 (~) 7t'o(1), o(2), 1 (~) "'" (~) 7to(i- 1), o(i), 1) A ip ~]= 0).  

Corollary 3.2. A pointed coalgebra C is the sum of  its irreducible components i f f  
CI is cocommutative. 

Proof. If C is the sum of components, then C1 is spanned by primitives and 
grouplikes. Conversely, if C1 is cocommutative, rtg, h, 1 = 0 if  g :~ h. Thus, by 3.1, 
Kg, h= {0} if g=/:h. 

For g and h grouplikes, let C(g, h) be the vector space 

( E  {Lu, o:u,°~Mg, h})+C(Mg, ht-J{g,h}; k), 

and let Cs(g,h)=C(g,h)NCs. 

Proposition 3.3. C(g, h) is a subcoalgebra o f  C, and Co(g, h) = C(Mg,  h I.J {g, h} ;  k).  

Proof. For u, o • Mg, h, C(u, o) C C(g, h). 
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Suppose (C, K) and (C, P )  both have property (.); let L = FK and C(g, h) be as 
above, with S=FP and D(g, h) the analogous objects for P. Note r and Mg, h agree 
whether constructed via K or via P (by 1.4). Finally, let L(g, h)= L f~ C(g, h), and 
S(g,h)=SND(g,h). 

Lemma 3.4. I f  p e C with 

A p - g ® p - p ® h e  ~, Lg, o(~Lo, h, 
o~G 

then p ~ Lg, h + k(g - h). 

Proof. It follows from 2.4 that peLg, h+C~,  and thence (by 1.2 and 1.4), that  

p~Lg, h +k(g-h) .  

Lemma 3.5. Let B = At~)Co(g,h). Then Bn = Cn(g,h). 

Proof. Clearly, Bo=Co(g,h) and Cn(g,h)CA(mCo(g,h)=B~ for all n. 
Cl(g, h) since B 1 is spanned by nearly-primitives (by 3.3). 

I f  B s = Cs(g, h) for all s < n, and c e B, ,  then 

But B l C 

A c e B o ® C + C ® B n _  1 and A c e B . _ I ® C + C ® B  o. 

Applying (nx, y® ny, z) to each expression yields (n~ y® ny, z)A c = 0 unless x, y, z e Bo. 

Thus c = b + Cl, for b e C,(g, h) and Cl e C1. But cl e C1 fqB, = B 1 = Cl(g, h). 

Proposition 3.6. C(g, h) = D(g, h). Further, Kg, h, i C e g ,  h, i "~" D + i - 1 (g ,  h). 

Proof. Co(g,h)=Do(g,h ) by 3.3, so Cn(g,h)=A(n)Co(g,h)=Dn(g,h). Also gg, h, iC 
D(g, h) and is spanned by pseudo-primitives of degree i, so 

gg, h, i C (Pg, h,i "4- D i -  l (g, h)) (') C +. 

Lemma 3.7. Let D be a subcoalgebra o f  C, and let (D, K) have property (,). Then 
there is a g.c.s. P o f  C with K a graded subspace of  P. 

Proof. P1 can be chosen to contain K 1. Examination of the proof  of 2.1 then 
shows that, if R is chosen to contain Ki, Pi will also. 

Lemma 3.8. Let ¢k : C ~ D  be an isomorphism o f  coalgebras with K and P g.c.s, for  
C and D respectively. Then for  each pair (g, h), Kg, h = P¢g,C~h as graded vector 
spaces. 

Proof. ~K is a g.c.s, for D. 
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Proposition 3.9. Let r :  C - , D  be a coalgebra monomorphism. Then 
(1) rc(g, h) implies rD(rg, rh). 
(2) Mg, h CMrg,~h and Ng, h CNrg ' rh" 

(3) C(g, h) is a subcoalgebra of  D(zg, zh). 

Proof. z is the composition of an inclusion with an isomorphism. 

Let M={Mg, h:g, h e G } ,  N={Ng, h :g ,h~G} ,  and C(G)={C(g,h):g, h e G } .  
We have shown: 

Theorem 3.10. r, M, N, and C(G) are invariants of  pointed coalgebras. 

Since the composition of functors is a functor, any functor on reflexive relations 
(or on indexed families of sets or of coalgebras) is an invariant of pointed 
coalgebras. 

Let A,(r) be the free abelian chain complex with n-simplices all relation- 
preserving maps from In] = {0, 1, . . . ,n} into r, with the usual boundary, and let 
A*(r) be the cochain complex of group homomorphisms from A.(r)  to k ~, with 
coboundary J. For a relation-preserving map ~ :r~r ,  let @ be the map induced on 
intervals of r, and 0 * be the map induced on the cochains. Then the homology and 
cohomology groups of A are invariants of pointed coalgebras, (cf. Farmer [2]). 

Finally, consider the category of indexed families of integers, {na}a~ I, with mor- 
phisms all maps of index sets, @:I-~J, such that n~ta)>_n~ for all aeI ;  and let 
dimc = {dim gg, h,i : g~ h ~ G~ i e P } .  Then: 

Proposition 3.11. dim c / s  an &variant o f  pointed coalgebras. 

Proof. Let (C,K) have property (.), and let D=Ci/L  i_ i. Let Xg, h = { d e D : d  is a 
(g, h)-nearly-primitive}. Xg, h is independent of choice of g.c.s, having property (.) 
(by 3.6), and (by 3.3), dimKg, h,i=dimXg, h -1  +Jg, h. 

Direct computation shows dim c is a functor. 

Corollary 3.12. dimcl is an invariant o f  pointed coalgebras. 

However A = dimc~ can be viewed as a G × G matrix with cardinal number 
entries, and we can compute its powers A i in the standard way. 

Proposition 3.13. dim Kg, h,i <~ (ai)g,h . 

Proof. If {va}~e,4 are linearly independent elements of Kg, h,i , then their projec- 
tions lt~ + IAio a m u s t  also be linearly independent. But these are sums of/-chains in 
Ng, hCMg, h (compare 3.1). But there are only (Ai)g,h /-chains in Mg, h. 
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4. The structure of incidence coalgebras 

Let R be a locally-finite antisymmetric reflexive relation with underlying set S. R 
is right locally-transitive iff for each x~  S, R restricted to {y e S : x R  y} is transitive, 
and left locally-transitive iff R restricted to { y e S:  yRx}  is. R is locally-transitive 
if it is both left and right locally-transitive. Call a locally-transitive locally-finite 
antisymmetric reflexive relation an admissible relation, and for such a relation R, 
let C(R) be the free vector space on its non-empty intervals ([g, h] -- {o ~ S : gR o and 
o r b }  if gRh,  and is empty otherwise). For a¢AE(R), define linear maps 
t : C(R) ~ k and A a : C(R)--) C(R) ® C(R) by 

g[g,h]=tSg, h and Aa[g,h]= ~ a(g,o,h)[g, ol®[o,h]. 
gRoRh 

Then C(R,a)=(C(R),A~,e) is a coalgebra iff a is a normalized cocycle. The 
coalgebras C(R, a) are generalized incidence coalgebras on R; C(R, 1) is the standard 
incidence coalgebra. Let Cn(R,a)=(C(R,a))n. The length of a chain in R is the 
number of elements in the chain, and the dimension of [g, hi is one less than the 
maximum length of chains from g to h. We identify the interval [g, g] with the point 
g. 

Proposition 4.1. (1) Co(R, a) = C(R; k) 
(2) Ci(R:a) ~ span{ [g, hl : dim[g, h] _< i }. 
(3) I f  dim[g, h] = t, then [g, h] ~i Ct_ ~(R, a). 

Proof. (1) C(R; k)CCo(R,a) and A(~)C(R; k)=C(R,a). (cf. 1.1). 
(2) Ci(R,a)=A(i)C(R; k). 
(3) ((~'nl)At-l[g,h]~O, but ((~'  rq)At-lIct_l(R,a)=O. 

Corollary 4.2. (1) [g, h] is a (g, h)-pseudo-primitive of  degree dim[g, h]. 
(2) I f  dim[g,h] =i, then Kg, h,i~O. 

Proposition 4.3. Let Ki=span{[g,h] ]dim[g,h] =i } .  Then K is a g.c.s, of  C(R,a) 
and (C(R,a),K) has property (.). 

Proof. C(R) is spanned by intervals. 

Corollary 4.4. (1) The relation r defined by C(R, a) is R. 
(2) I f  a coalgebra C is isomorphic to an incidence coalgebra 

R =(G(C),rc). 
C(R, a), then 

Note that every incidence coalgebra satisfies, for every g,h ~ G: 
(I) dim(Kg, h + Kh,8)-- < 1 - t~g,h. 

(II) If O~:Ttg, o,i and O~/:Tto, h,j, then ns, h = ~,s,.~+jTtg, h,s. 
(III) If O#:c~Kg, h and oENg, h--{g,h }, then Ozg, v®no, h)AC~O. 
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Let D be any pointed coalgebra satisfying properties (I), (II), and (III). 

Lemma 4.5. (1) rD is an admissible  relation. 

(2) I f  g ~ h, then the dimension o f  the interval [g, h] in r D is n > 0 i f f  Kg, h, n ~ O. 

Proof.  (1) r D is antisymmetric since D is pointed, and locally-finite since D is a 
coalgebra (and reflexive by definition). Property (II) implies local transitivity. 

(2) Kg, h~O iff dim[g,h]>0. Assume Kg, h=Kg, h,,n. Then (by antisymmetry and 
3.1) m_< dim[g, h]. But if s is minimal such that Kg, h,s~O and dim[g,h]>s, then 
property (II) gives a contradiction. 

Theorem 4.6. I f  D is a coalgebra satisfying properties (I), (II), and (III), then 
D--- C(R, a) for  some a. 

Proof. Choose, in each non-zero Kg, h, a (non-zero) element (g,h); and, for 
oeNg, h - { g , h  }, let 

(ltg, o × lto, h )A(g ,  h )  = a(g, o, h)(g, v)®( v, h ). 

By property (III), a(g, o, h) SO, so, defining a(g, g, h) = a(g, h, h) = 1, D-- C(R, a). 

Corollary 4.7. D-- C(P, a) for  P a partially ordered set i f f  D satisfies (I), (III), and 
(II') i f  O:/=ltg, o,i and O~lto, h, j, then O#:Ttg, h~- ~s>_i+j 7Cg, h,s" 

The remainder of the section determines conditions under which two such 
coalgebras will be isomorphic (clearly the admissible relations must be isomorphic). 

Lemma 4.8. (1) Let q~ be an automorphism of  R, and ~=~-l. Then ~ : C(R,a)-* 
C(R,@# a) is an isomorphism. 

(2) I f  a and y are cohomologous, then C(R, a)= C(R, y). 

Proof. (2) If ay -1 = Jfl, then fl is normalized and B defined by B([g, h]) =fl(g, h)[g, h] 
is a coalgebra isomorphism from C(R, y) to C(R, a). 

Theorem 4.9. C(R,a)=C(R, 7) i f f  there is an automorphism @ of  R with a and @#y 
cohomologous. 

Proof.  ( = )  Let @- 1 = 0, and a(@ # y)- 1 : ~ f l ,  and apply 4.8. 
(= )  Let q/ be the isomorphism, and let Ggt=cp:R~R,  with @=O -1. Then 

q/o @ : C(R, 0 # Y)-~ C(R, a) is a coalgebra isomorphism with G(¢, o @) = idR. 
Thus it is sufficient to show: If q/:C(R,a)~C(R,y)  is an isomorphism with 

Gct=idR, then a is cohomologous to y. 
Let C s_ 1 (g, h) denote (Cs_ 1 (R, a))(g, h), and define a cochain /~ ~ A 1 (R) by 

u/[gh] e fl(g,h)[g,h] + Cs+_l(g,h); fl(g,g)= 1. Then, comparing (Ztg, o®ltv, DA~[g,h] 
and (rig, o ® no. h)(g/® g/)A [g, h] yields 
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a(g, v, h) = y(g, v, h) fl(v, h) fl(g, h)-i fl(g, v), or ay-1 = ]~. 

Corollary 4.10. (1) C(R,a)=C(R,  1) i f f  a is a coboundary. 
(2) I f  H2(R, k s)  :/: 1, then there is a non-standard incidence coalgebra on R. 

Thus if P is the partially-ordered set {e I , e2fl,  f2, gl, g2 } with the order ei < f j  < gs 
for all i,j, s (i.e. the usual decomposition of $2), then there is a distinct coalgebra 
for each a e k  s ,  where a ( e l , f l , g l ) = a ,  a= 1 otherwise. It can be shown that the 
following locally-finite partially-ordered sets have H2(p, k s)  = (0), and so support 
no non-standard incidence coalgebras: trees, directed sets and their duals, and cer- 
tain finite (or initially or terminally finite) sets (cf. [1] and [8]). 

That the generalization to reflexive relations is not trivial can be seen from the 
following two examples. First, consider the set {ai}~, with ai R aj iff i - j_< m mod n 
(the m-transitive n-circle). Then, for m < [n/2], this is an admissible relation whose 
transitive closure is not a partially-ordered set. Second, for the partially-ordered set 
P above, consider Q = PO {h}, where h R ei and h R f i  (but not h R gi). Then/~ is a 
partial order with trivial second cohomology, but Q can be viewed as the union on 
S 1= {fl,f2,el,e2} o f  E 2 and S 2, and its second cohomology group seen to be free 
on two generators (by Mayer-Vietoris). Q has the cohomology of a wedge of two 
2-spheres. 
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